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LETTER TO THE EDITOR 

Painleve analysis, Yoshida’s theorems and direct methods in 
the search for integrable Hamiltonians 

D Roekaertstf and F SchwarzO 
t lnstituut voor Theoretische Fysica, Universiteit Leuven, 8-3030 Leuven, Belgium 
8 GMD, lnstitut F1, Postfach 1240, D-5205 St Augustin, West Germany 

Received 21 October 1986 

Abstract. Treating as an example two-dimensional similarity invariant Hamiltonians with 
polynomial velocity-dependent potentials, we show how Painlevi analysis, Yoshida’s 
theorems and direct methods can be combined in the search for integrable Hamiltonians. 
New integrable systems are found, one of which has a polynomial second invariant of fifth 
order in the momenta. Most of the necessary calculations have been performed by applying 
various REDUCE packages developed for that purpose. 

Integrability of low-dimensional Hamiltonian and non-Hamiltonian systems has been 
a very active field of research in the last few years, the reasons being, on the one hand, 
the success of singular point analysis as a method to find candidates for integrable 
systems [ 1-51 and, on the other hand, the availability of algebraic computing programs 
which make the extensive calculations necessary to perform this analysis and to find 
constants of the motion possible [6-81. 

Different forms of singular point analysis have been used in the literature. There 
is PainlevC analysis, as proposed by Ablowitz et a1 [ 13 and afterwards used and refined 
by many authors [2 ,3 ,5 ]  and there is Yoshida’s method [4] which has been applied 
in [9,10]. In the way they have been applied the advantages of these two approaches 
are that they restrict strongly the number of candidates for integrability and can provide 
information on the form of possible constants of the motion, respectively. It is the 
aim of this letter to show how these advantages can be combined. The relation between 
the ‘resonances’ used in PainlevC analysis and the ‘Kowalevski exponents’ ( KE)  intro- 
duced by Yoshida will be given. Then it will be possible to show how the information 
on the form of the constants of the motion contained in the KE can also be found in 
the resonances or vice versa, and how the restrictions imposed on the resonances by 
the PainlevC conjecture can be translated in restrictions on the KE. 

For concreteness we consider two-dimensional Hamiltonian systems with poly- 
nomial velocity-dependent potential, defined by 

(1) 

Known integrable Hamiltonians of this form and the direct methods to find the second 
invariant have been reviewed recently by Hietarinta [ l l ]  (see also [12, 131). 

H ( P ,  9 )  =b.4+4PP:+PlA(qIy qJ+P2B(ql ,  q2)+C(q1, q 2 ) .  
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Yoshida’s method can be applied when A and  B in (1) are homogeneous of degree 
d and C is homogeneous of degree 2d since then the Hamilton equations of motion 
are invariant under the similarity transformation 

t+a-I t  9, -, a%, PI-,ffgPZ i = l , 2  (2) 

the weighted degree of q and p respectively being g = l / ( d  - 1) and g ’ =  d / ( d  - 1). 
Kowalevski exponents are associated with the variational problem around special 
solutions of the Hamilton equations of motion given by 

qr = c,( t - fg)-g i = l , 2  ( 3 a )  

P I  = c:( t - to)  - g  i = 1 , 2  (3b) 

-gc, =~Hl~P, I ,=c, ,=c ( 4 a )  

-g’c: = -aH/aq,I,=,,=, . (4b) 

with c, and c: solutions of 

Equivalently, one may consider the variational problem around special solutions of 
the form (3a)  of the Euler-Lagrange equations ( W,, = a  W/aql ,  etc): 

where 

with the parameters c,, i = 1,2,  solutions of 

F , ( q , ,  92)’-g(g+l)c , -gC2~(c, ,  c2)- W,l(CI, c,)=O 

F2(41, q 2 ) 3 - g ( g + 1 ) c z + g c I ~ ( C l ,  4- W,2(c,,c2)=0. (8b) 
Equations (8) are obtained from equations (4) through elimination of c:, i = 1,2. 
Substituting 

q , = c , ( t - t o ) - g + d , ( t - t o ) - g t p  i = 1 , 2  ( 9 )  

with c, a solution of (8), into the linearised form of (5) one obtains a pair of linear 
equations for di, i = 1,2,  the determinant of which is the Kowalevski determinant K ( p )  
given by 
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Therefore here all sets are of the form 

P = -1, g,, P,  g, - 1 - P (12) 
with g, = 2 d / ( d  - 1 ) .  

Yoshida has shown [4] that if there exists a second invariant L( p ,  q )  of weighted 
degree g, satisfying the condition that its gradient does not vanish at q = c, p = c’,  with 
c, c’ a solution of (4), then a K E  p = g, is associated with this c, c‘.  (In the case g, = g, 
there is the supplementary condition that the gradients of L and H must be linearly 
independent). Yoshida has also shown [4] that a necessary condition for the existence 
of an algebraic second invariant is that all K E  are rational numbers. From this one 
can learn that a direct search for a rational second invariant should only be done when 
all K E  are rational and that a second invariant should first be looked for among the 
weighted homogeneous functions L ( p ,  q )  of weighted degree g, equal to one of the 
K E  P. In particular, for P a positive multiple of 1/( d - 1) this L( p ,  q )  can be a polynomial. 
The condition that all exponents are rational and that one of them is a positive multiple 
of l / ( d  - 1) is not expected to be a sufficient condition for integrability. Such a condition 
is provided by the Painleve conjecture which we consider next. 

According to the Painlevk conjecture [ 13 and its extension [2,3] a sufficient condition 
for complete integrability is the PainlevC and the weak PainlevC property, respectively. 
A Hamiltonian has the Painlev6 property if the only movable singularities of all the 
solutions of the equations of motion in the complex time plane are poles. In the case 
of the weak PainlevC property certain algebraic branch points also are allowed (see 
below). A strong necessary condition for the system having the PainlevC or weak 
PainlevC property is provided by an algorithm called singular point analysis or PainlevC 
analysis [ l ,  21. Its main steps have been described in detail in [ 5 ] .  Here we restrict 
ourselves to those aspects which are relevant in the comparison with Yoshida’s 
theorems. 

In the first step of PainlevC analysis the ansatz 

q, = c,( t - t o )  - p ’  i = 1 , 2  (13) 
is inserted into the equations of motion (5) where the general form of U and W defined 
by (6) and ( 7 )  is 

where uk, k = 1, . . . , d - 1 and wk, k = 1, . . . , 2 d  are constants. We assume U + 0 and 
w+o. 

Expression (13) is supposed to be the leading term of a solution exhibiting a rational 
movable singularity at t = to. Consequently c l  and c2 are assumed to be non-zero and 
p l  and p2 to be rational numbers. For certain values of p,, i = 1,2,  some terms of the 
equations may balance while others can be ignored for t + t o .  The former are called 
the dominant terms of the equations. In this way one obtains, in general, equations 
determining the amplitudes c , ,  i = 1,2.  All possibilities of dominant behaviour specified 
by the sets {p , ,  c, ,  i = 1,2} must then be investigated further. The possibility p l  = p 2  = g 
for which all terms are dominant and the c, satisfy (8) correspond to the special 
solutions considered in Yoshida’s theorems. There, however, cI and c2 are not restricted 
to be non-zero. 
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In the second step of PainlevC analysis 
qi = ci( t - to)-’, + di( t - to ) -”+‘  i = l , 2  (16) 

is inserted in the linearised form of the dominant terms. Resonances are those values 
of r for which the determinant of the linear system satisfied by di, i = 1,2, vanishes. 
In the case p I  = p2 = g this determinant is the Kowalevski determinant and the reson- 
ances are identical to the Kowalevski exponents. For other values of pi, i = 1,2, this 
is not the case. A necessary condition for the system to have the PainlevC property is 
that all resonances are integers. In the case of the weak PainlevC property, resonances 
which are multiples of l/s, s being the common integer denominator of p I  and p 2 ,  
are also allowed [2,3,5]. (We remark that the definition of resonance we use here 
differs by a factor s from the one used in [ 5 ] . )  

When the resonances satisfy these conditions, in the third step of PainlevC analysis 
it is tested whether the positive resonances indeed correspond to free parameters in a 
solution to the full equations of motion without logarithmic singularities. In the 
comparison with Yoshida’s theorems only the first two steps of the Painlevi analysis 
play a role. 

Let us consider now singularities (13) with p1 < p2 = g. Performing the first step 
of the PainlevC analysis one finds that these are possible when 

w o # O ,  uo=O, w1 = O  and u l w z # O  (17) 
the dominant terms in (5a) being linear in q 1  and the dominant terms in (5b)  being 
independent of q1 . They balance provided 

GI(pl; cZ)  E -p l (p l+  1 )  - gu,C;-l - 2 ~ 2 ~ : ~ - ~  = 0 ( 1 8 ~ )  
G ~ ( c J =  - g ( g +  1 ) - 2 d w o ~ ; ~ - ~ = O  (18b) 

which can be solved for p I  and c2 in terms of ul, wo, w2 and d. (Recall g = l / (d  - l ) . )  
The associated resonances are found to be r = - 1 ,  2d / (d  - l ) ,  0 and J with 

7 = 2 p 1  + 1 .  (19) 
Considering on the other hand the amplitude equations (8) and the Kowalevski 
determinant (10) and (1 1) for solutions (3a) with c, = 0 one sees that 

FI(O, c2) = 0 (20a) 

F,(O, ~ 2 )  G ~ ( c z )  (206) 

Mll(P;O, c2)= G 1 k - p ;  c2) (20c) 

p =  l / d  - 1 - p i  (21) 
(22) 

and the Kowalevski exponents are (12) with 

= l / d  - 1 - $ ( J -  1 ) .  

This difference between resonances and Kowalevski exponents can be explained by 
the different choice of leading order in t - to in equations (9) and (16). In an analogous 
way the relation between (16) with pz < p I  = g and (9) with c2 = 0 can be established. 

In general, still other PainlevC leading singularities having no counterpart in 
Yoshida’s theorems might exist. These are not considered here. Instead we show how 
the results obtained so far can be used to combine the advantages of PainlevC analysis 
and Yoshida’s theorems. 

First, the theorems on Kowalevski exponents can be translated into theorems on 
resonances. 
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(i)  If a second invariant of weighted degree g, exists such that its gradient is not 
zero on a solution of (3) with c1 and c2 both non-zero, then there is a resonance F = gL 
associated with the corresponding Painlevi leading singularity with p ,  = p2 = g. 

(ii) If a second invariant of weighted degree g, exists such that its gradient is not 
zero on a solution of (3)  with c1 = 0, c2 # 0 or c1 # 0, c2 = 0, then there is a resonance 

7 = 2( g, - 1/ d - 1) + 1 (23) 

associated with the corresponding Painlevi leading singularity with p I  < p2 = l / ( d  - 1) 
or p2 < p I  = l / ( d  - 1) respectively. 

(iii) A necessary condition for the existence of an algebraic second invariant is 
that all resonances with Painlevi leading singularities with p ,  = l / ( d  - 1) or p2 = 
l / (d  - 1) are rational numbers. 

On the other hand, the restrictions imposed on the resonances by the Painlevi 
conjecture, namely that they should be multiples of l/s, s being the common integer 
denominator of p1 and p2,  can be translated in the following restrictions on the 
Kowalevski exponents. 

( a )  All KE associated with solutions c1, c2 or (8) with c1 and c2 both non-zero must 
be multiples of l / ( d  - 1). 

(b)  All K E  associated with solutions c I ,  c2 of (8) with c1 = 0, c2 # 0 (resp. c1 # 0, 
c2 = 0) must be multiples of 1/2s, s being the integer common denominator of p1 (resp. 
p2) and l / ( d  - 1 ) .  

In a search for integrable systems Painlevi analysis, Yoshida’s theorems and direct 
methods can be combined as follows. 

First the K E  are calculated. Next the restrictions coming from the second step of 
the Painlevi analysis are imposed and a direct search is performed for a polynomial 
second invariant of weighted degree equal to one of the KE. (We remark that it is a 
common procedure to do a search for a constant of the motion already after the second 
step of Painled analysis.) The calculation of the K E  and the direct search for the 
polynomial invariants can be performed automatically using REDUCE packages 
developed by one of us [7 ,8] .  In the absence of success a second invariant can be 
looked for among non-polynomial functions, e.g. rational functions, or among functions 
of a different weight which then must have a gradient vanishing identically on the 
solution set of (4). According to the Painlevi conjecture this should only be pursued 
systematically when the system has also passed the third step of the Painlevt analysis. 

As an illustrative example, we now consider the two-parameter class of Fokker- 
Planck Hamiltonians [ 5 ]  

H ( P ,  4 )  = +PP:+fP:+P141q2 +P2(aq: + bq:) 

U(q1 , 42) = (1 -2aIq1 

W(qi 3 92) = 

(24) 

(25a )  

(25b) 

for which d = 2 and 

1 2 4  
91 - ( f +  ab)qP:q:-fb2q:. 

For a = 4 this model is related by a gauge transformation to a one-parameter class 
of quartic potentials and is known to be integrable for b = -1, b = -4, 1 and 2. Here 
we assume a # f. 

For U # 0, b # 0 and b # -1/4a the solutions of equation (8) with the associated 
K E  p are 

(i) ~1 = * [ ( l - b ) / ~ ] ” ~  c2=-1  P = 1 + 2 6  ( 2 6 )  
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(ii) c l = * { [ ( 1 + b ) ( 3 + ~ f f ) + 4 a b ( l -  b)]/2af)’” 
2 -  - [f”’I/’]/(2f’/2) 

p =i+[$+f’b(2b + 1)/f-  (f’/f)Il2(b -2)(2b + 1)]1’22 (27)  

(iv) c1 = o  c2= - I / b  p = 2 +  l / b  (28) 

( V I  CI = o  c 2 = I / b  p = ; +  - (1/2b)[(b-2)*+ 1 6 ~ b ] ” ’  (29) 

(iii) obtained from ( i i )  by replacing f’l” + - f l ”  

where 

f = 1+4ab  

f ’  = 9 + 4~ ( b  - 4). (31) 
We now impose the conditions coming from the second step of the Painlev6 analysis. 

First, we exclude the special lines b = 1, b = -1 and a = (2b - I ) (b  + 1)/4b. Then cI 
and c2 are non-zero in cases (i)-(iii) and c, = 0, c2 # 0 in cases (iv) and (v). Recalling 
that here d = 2 one has that a necessary condition for the weak Painlev6 property to 
hold is that in cases (i)-(iii) p is integer and in cases (iv) and (v) p is rational. This 
is satisfied for the following values of a and b: 

b = 4  U = (18+ k)( 18- k)/(16k2) kEN, k Z 6  (32a) 

An interesting and finite subset can be singled out by the requirement that all integer 
K E  are not bigger than a given integer no. Choosing no = 20, cases (32a) for k 3 17 
are excluded. For the remaining 23 cases a direct search was performed. In three of 
them a polynomial second invariant was obtained with weighted degree equal to one 
of the KE. ((1)-(111) below). Proceeding in the same way for the exceptional lines 
b = 1, b = -f ,  a = (26 - 1)( b + 1)/4b and a = 0, b = 0, b = -1/4a two more integrals 
were found ((IV) and (V) below). Furthermore, applying the REDUCE package it was 
checked that no further polynomial first integrals exist of weighted degree s 20. 

In summary, the results obtained by a combined use of PainlevC analysis, Yoshida’s 
theorems and  direct methods is that the Hamiltonian (24) with a # is integrable in 
the following cases (the K E  associated with alternatives (i)-(v) and  the second invariant 
are given): 

(1) 0 ~ 1  8, b = 2  

p = 5 ,  8, 8,2,2 

U P, 4 )  = P: + P h  (4P, 42 - 37241 ) + 4:( - tp :q*  - p1p2q2 + &P:% 1 
g,=g 

(33) 

a = - ’ b = ’  (11) 4, 2 
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L(P,  4 )  =P:(2P2+d) (36) 

g ,=6  

a = 0, b = 1, related to ( IV)  by a gauge transformation. (VI 
Except for case (II) ,  which was obtained first by Hietarinta [ 131 applying a canonical 

transformation to an integrable velocity independent quartic potential, there results 
are new. In particular, we remark that case (111) is the first example ever given with 
a second invariant which is a polynomial of fifth order in the momenta. 

More results will be reported elsewhere. In addition, the direct search program is 
being generalised to treat not only polynomial but also rational functions [SI. It can 
be expected that, encompassing this generalisation, a still closer relation will appear 
between properties at singular points and explicit determination of invariants. 

Finally, we remark that the method is not restricted to two-dimensional systems 
and has been applied in the search for integrable three-dimensional quartic 
potentials [9]. 

This work was started while one of us (DR) was visiting the Institut fur Physik, 
Universitat Essen. The Alexander von Humboldt Foundation is gratefully acknowl- 
edged for the fellow ship which made this stay possible. We also thank R Graham, 
J Hietarinta, L Ingber and T TCI for correspondence and discussions. 
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